To search, Click below search items.

 

All Published Papers Search Service

Title

DNA Sequences Compression using Repeat technique and Selective Encryption using modified Huffmans Technique

Author

Syed Mahamud Hossein, Debashis De, Pradeep Kumar Das Mohapatra

Citation

Vol. 24  No. 8  pp. 85-104

Abstract

The DNA (Deoxyribonucleic Acid) database size increases tremendously transmuting from millions to billions in a year. Ergo for storing, probing the DNA database requires efficient lossless compression and encryption algorithm for secure communication. The DNA short pattern repetitions are of paramount characteristics in biological sequences. This algorithm is predicated on probing exact reiterate, substring substitute by corresponding ASCII code and engender a Library file, as a result get cumulating of the data stream. In this technique the data is secured utilizing ASCII value and engendering Library file which acts as a signature. The security of information is the most challenging question with veneration to the communication perspective. The selective encryption method is used for security purpose, this technique is applied on compressed data or in the library file or in both files. The fractional part of a message is encrypted in the selective encryption method keeping the remaining part unchanged, this is very paramount with reference to selective encryption system. The Huffman's algorithm is applied in the output of the first phase reiterate technique, including transmuting the Huffman's tree level position and node position for encryption. The mass demand is the minimum storage requirement and computation cost. Time and space complexity of Repeat algorithm are O(N2) and O(N). Time and space complexity of Huffman algorithm are O(n log n) and O(n log n). The artificial data of equipollent length is additionally tested by this algorithm. This modified Huffman technique reduces the compression rate & ratio. The experimental result shows that only 58% to 100% encryption on actual file is done when above 99% modification is in actual file can be observed and compression rate is 1.97bits/base.

Keywords

Sequence, Compression, decompression, Huffman, encryption & decryption .

URL

http://paper.ijcsns.org/07_book/202408/20240809.pdf