Abstract
|
Femtocells have recently been recognized for their potential to boost network capacity, improve end-user QoS and throughput, and do so at a cheap cost and with ease of implementation. The use of femtocells in indoor environments, such as residential buildings with neighboring homes, is becoming more popular. Femtocells are subject to interference from other femtocells, and the unwanted effects of interference are amplified when femtocells are deployed in close proximity to one another. As a consequence, the network's overall performance is degraded to a significant degree. One of the strategies that is thought to be effective in reducing the impact of interference is altering the transmission power of the femtocells. In this paper, a dynamic downlink transmission power of femtocells is suggested. In accordance with the observed cost function unit, each femtocell automatically changes its transmission power. If a femtocell causes too much interference for its neighbors, its transmission power level will be limited by that interference's rate. A simulation experiment is conducted to validate the effectiveness of the suggested system when compared with other schemes. When compared to previous schemes, which are addressed in this study, the numerical results show that the proposed strategy could provide more capacity while also ideally mitigating the influence of interference among co-channel deployed femtocells.
|