To search, Click
below search items.
|
|

All
Published Papers Search Service
|
Title
|
Market-Basket Analysis using Agglomerative Hierarchical approach for clustering a retail items
|
Author
|
Rujata Saraf and Sonal Patil
|
Citation |
Vol. 16 No. 3 pp. 47-56
|
Abstract
|
With the advent of data mining technology, cluster analysis of items is frequently done in supermarkets and in other large-scale retail sectors. Clustering of items has been a popular tool for identification of different groups of items where appropriate programs and techniques in data mining like Market-Basket analysis have been defined for each group separately with maximum effectiveness and return. For example, items frequently purchased together are placed in one place in the shelf of a retail store. There are various algorithms used for clustering. Hierarchical algorithms find successive clusters using previously established clusters. These algorithms usually are either agglomerative (""bottom-up"") or divisive (""top-down""). The paper presents the Market-Basket Analysis using Agglomerative (¡°Bottom-up¡±) hierarchical approach for clustering a retail items. Agglomerative hierarchical clustering creates a hierarchy of clusters which are represented in a tree structure called a Dendorogram. In agglomerative hierarchical clustering, dendrograms are developed based on the concept of ¡®distance¡¯ between the entities or, groups of entities. . The clustering will done in such a way that the Purpose of Market-Basket Analysis will achieve.
|
Keywords
|
Market-Basket analysis, Hierarchical Clustering, Agglomerative Hierarchical Clustering, Dendrogram etc¡¦
|
URL
|
http://paper.ijcsns.org/07_book/201603/20160307.pdf
|
|